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DEVELOPMENT OF A TRANSFER FTJNCTION METHOD 


FOR DYNAMIC STABILITY MEASUREMENT 


Wayne Johnson 


Ames Research Center 

and 


Ames Directorate, USAAMRDL 


SUMMARY 


A flutter testing method based on transfer function measurements is 

developed. The error statistics of several dynamic stability measurement 

methods are reviewed. It is shown that the transfer function measurement con­

trols the error level by averaging the data and correlating the input and out­

put. This method also gives the experimenter a direct estimate of the error 

in the response measurement. An algorithm is developed for obtaining the 

natural frequency and damping ratio of low-damped modes of the system, using 

integrals of the transfer function in the vicinity of a resonant peak. Guide­

lines are given for selecting the parameters in the transfer function measure­

ment. Finally, the dynamic stability measurement technique is applied to data 

from a wind-tunnel test of a proprotor and wing model. 


INTRODUCTION 


A major task in developing new aircraft is the demonstration of satisfac­
tory aeroelastic characteristics. Beyond the determination of the flutter 
boundary, or establishing that the aircraft is flutter-free throughout its 
operating envelope, it is also desirable to obtain detailed dynamic informa­
tion. This information is used to determine specific characteristics (such as 
the aircraft gust response) and to verify mathematical models of the aircraft. 
Thus, the flutter testing of an airplane or helicopter requires an accurate, 
efficient, and reliable method to measure the aeroelastic response, and then a 
method to obtain from the response the parameters defining the dynamic 
characteristics. The most important parameters are generally those defining 
the flutter stability level, that is, the frequency and damping of the low-
damped modes of the system. The state of the art of dynamic stability testing 
in the aircraft industry has been described in a number of surveys (refs. 1 to 
5) .  The problem usually involved is the flutter testing of the airplane wing 
or tail in flight. Some form of frequency-response procedure is common. Many 
variations exist, but a typical procedure involves fast swept-sine excitation, 
digital analysis of the response (analog analysis is also still common), with 
the frequency and damping determined from the circle on the phase plane (see 
ref. 6 ) .  Another approach often used is to determine the dynamic stability 
from the decaying transient response. A number of measurement and analysis 

techniques has been developed for structural dynamics testing, but in such 




testing the principal data required are the frequencies and mode shapes, 

whereas in flutter testing it is the damping that is of primary concern. 


Flutter testing methods such as fast sine sweep or transient decay can 

work well with clean data. With low process and measurement noise, the excita­

tion level can be sufficiently high that the effects of noise on the measure­

ments can simply be neglected. As the noise increases, however, the accuracy 

of the flutter parameter determination by such methods degrades rapidly, espe­

cially the damping measurement. Dynamic stability measurement is particularly 

difficult for rotorcraft, where many degrees of freedom are involved, and the 

levels of process noise (turbulence-induced, especially in a wind tunnel) and 

measurement noise (rotor- or engine-produced vibration) can be high. Thus, in 

general, a dynamic stability measurement technique is required that can be 

applied to data with a significant noise level. 


Accurate and reliable flutter testing requires minimal error in measuring 

system response and in analyzing the data. Regarding control of the error 

level in the response estimation, the test techniques may be classified in 

three categories. First are the techniques that use a high signal-to-noise 

ratio to control the error. Examples are the transient decay method (perhaps 

using the moving block analysis in the data reduction), and a fast sine-sweep 

measurement of the transfer function. Second are the techniques that average 

the estimation of the response due to existing disturbances of the system 

(such as aerodynamic turbulence). Examples are spectral analysis, correlation, 

and random decrement signatures. Third are the techniques that, in addition 

to averaging, use correlation between the response and a measured external 

input to reduce the error. Examples are single-input, single-output transfer 

function methods, and more sophisticated parameter identification techniques 

using several output and input measurements. The error characteristics pro­

gressively improve with each of the three categories. After the response meas­

urement is obtained, in either the time or frequency domain, the parameters 

describing the dynamic characteristics of the system must be calculated, par­

ticularly the damping ratio, which gives the quantitative level of stability. 

A technique is required that is accurate when applied to noisy data and that 
can be implemented for online stability measurements. Most techniques 
(including the one developed here) obtain the frequency and damping of the 
low-damped modes by an algorithm based on the response of a single-degree-of­
freedom, second-order system. 

In this report, the method for measuring dynamic stability uses a sifgle­

input, single-output transfer function, and pays particular attention to the 

error characteristics with noisy data. The error statistics of several 

response measurement techniques are summarized to establish the relative value 

of the transfer function. Then, an algorithm is derived for obtaining the 

damping ratio and other parameters. Next, the procedure for measuring the 

transfer function is discussed. Finally, an example of the application of 

this dynamic stability measurement technique is given. The data used are from 

a wind-tunnel test of a model proprotor and cantilever wing. We begin with a 

discussion of the mathematical model used for the aeroelastic system. 
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LINEAR SYSTEM DYNAMICS 


A linear system is considered in the examination of the dynamic stability 

measurement techniques, with excitation by various control inputs and external 

disturbances. The response of the system is measured, perhaps with signifi­

cant measurement noise such as rotor- or engine-induced vibration. The system 

can be excited by existing unknown disturbances (such as aerodynamic turbu­

lence), or by a measurable external input applied to determine the dynamic 

stability. The system motion is therefore described by linear, time-invariant 

differential equations, of the form 


4y = c 2 + 3  


4where x is the state vector (degrees of freedom), and 3 is the measurement. 
The vector 3 is random measurement noise; 8 is an input exciting the system, 
either an existing random disturbance or an external input (random or deter­
ministic). The matrices A, B, and C are constant since the system is time 
invariant. The solution for the response to excitation by 8,with initial 
conditions at time to, is 

(see ref. 7). The stability of the system is determined by the eigenvalues 

of A. The eigenvalues usually occur in complex conjugate pairs, of the form 


where Wn is the natural frequency (in Hertz) and 5 the damping ratio of 
the mode. The mode is stable if 5 > 0, and is an exponentially decaying 
oscillation for 0 < 5 < 1. In flutter testing, the low-damped modes of the 
system are of primary concern (roughly 0 < < < 0.1). If A is the diagonal 
matrix of the eigenvalues of A, and M the matrix whose columns are the 
corresponding eigenvectors, then A = MAM-I. For further information on the 
dynamics of linear systems, the reader is directed to references 7 to 9. 

Regardless of the procedure for measuring stability, the system must be 

controllable and observable. Thus, the input must sufficiently excite the 

modes of interest and the modes must be observable in the response of the 

,variablesmeasured. 
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ERROR ANALYSIS OF THE RESPONSE MEASUREMENT 


Error Analysis of Transient Decay Method 


The transient motion of a dynamic system is composed of exponentially 

decaying oscillations of each mode. A particular measurement is often domi­

nated by one low-damped mode. From the oscillation period and the decay rate 

of the trace, the freqiiency and damping of the mode may be estimated. The 

typical procedure establishes a large sinusoidal motion by external excitation 

at the natural frequency of the mode of interest. The excitation is stopped 

and the subsequent transient motion is analyzed to determine the damping. 


Consider the linear, time-invariant system described in the previous sec­

+ - + ­tion, with state variable ?t: and measurement y; u is process noise, such as 

aerodynamic turbulence; and i f  is measurement noise. It is assumed that ?i 
and 3 are random disturbances with zero mean. The motion following time to,

+-where the initial conditions x(t0) are established by the external excitation, 

is 


The first term in is the transient we wish to observe. The second term is 

the noise in the response caused by the disturbances occurring after to. The 

third term is the measurement noise. The error introduced by these disturb­

ances is the primary difficulty with this technique. The following analysis 

derives the expected value and variance of the response, designated E$ and 

Vy = E($ - ET)2.  The terms "expected value" and ''variance''are used rather 
than "mean" and "standard deviation," because the latter are often associated 

with a time average of the response. Here, E$ and Vy are themselves time-

varying quantities. The normalized variance E = dE/E$ is the basic error 
parameter considered. For a discussion of the probabilistic aspects of such 

an error analysis, see reference 10. 


The expected value of the measurement is the transient response 
E$ = CeA(t-to)+-x(t0). The external excitation must establish a large, nonzero 
initial condition for the modes of interest. The variance of the observation 
is: 

Vy = E(? - E$)2 = E(F2) - (E?)2 

where it is assumed that u is white noise with correlation

+-

E Z ( . r l ) a ( . r 2 )  = Q S ( T ~- ~ 2 )( s o  also u for t > to is uncorrelated with 2 
at to), and the measurement noise covariance is R = E[~(T)?(T) 1 .  The steady-

+-state variance X = Vx of the response of the system to the disturbance u 
alone is related to Q by 

-(AX + XAT) = BQBT 
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( r e f .  7 ) .  I f  t h i s  r e l a t i o n  i s  s u b s t i t u t e d  f o r  BQBT i n  Vy, t h e n  t h e  o u t p u t  
v a r i a n c e  i s  p r o p o r t i o n a l  t o  t h e  s q u a r e  of t h e  s t a n d a r d  d e v i a t i o n  of t h e  s teady-
s t a t e  response  ax2 = X. I n  p a r t i c u l a r ,  i f  t h e  response  i s  dominated by a 
s i n g l e  mode, t h e n  t h e  normalized v a r i a n c e  is  approximate ly  

( s e e  r e f .  11). The f i r s t  t e r m  i s  t h e  p r o c e s s  n o i s e ;  t h e  second t e r m  i s  t h e  
measurement n o i s e .  A s  t - t o  i n c r e a s e s  and t h e  t r a n s i e n t  decays ,  t h e  n o i s e  
becomes more i m p o r t a n t .  To de termine  t h e  damping r a t i o ,  the t r a n s i e n t  m u s t  b e  
observed w h i l e  i t  decays t o  a f r a c t i o n  f of t h e  i n i t i a l  v a l u e  ( f  = 0.3 t o  
0.5,  t y p i c a l i y ) .  The maximum e r r o r  t o  b e  d e a l t  w i t h  i s  t h u s  

which i s  b a s i c a l l y  t h e  r a t i o  of t h e  background p r o c e s s  and measurement n o i s e ,  
and t h e  s m a l l e s t  v a l u e  of t h e  t r a n s i e n t .  The maximum r m s  e r r o r  i s  t h e n  a t+least  two t o  t h r e e  t i m e s  t h e  r a t i o  of t h e  r m s  response  due t o  u and t h e  
i n i t i a l  response  ampl i tude ,  p l u s  t h e  measurement n o i s e .  

The frequency and damping from t h e  t r a n s i e n t  decay are  u s u a l l y  based on 
t h e  response  of a s i n g l e  mode 

x = x o e-521rrwnt c o s  (21rwn K - F  t + QG) 
The f requency  i s  g iven  by t h e  p e r i o d  of t h e  o s c i l l a t i o n  w = 1 / T  (Hz) .  To 
de te rmine  t h e  damping r a t i o ,  c o n s i d e r  two peak ampl i tude  measurements xi and 
x2, which a r e  n o s c i l l a t i o n s  a p a r t .  Then, s i n c e  x2 = X I  exp(-Zlrn</=), 
i t  f o l l o w s  

Of ten ,  t h i s  t a s k  i s  accomplished by hand, d i r e c t l y  from a n  o s c i l l o g r a p h  trace 
of t h e  response .  I n  g e n e r a l ,  t h e  damping r a t i o  may b e  determined from t h e  
envelope  of t h e  o s c i l l a t i o n  by 5 ;- (d  En x/dt)/2lrw. The d i f f i c u l t y  i n  
reducing  t h e  d a t a  l ies  i n  de te rmining  t h e  envelope of t h e  decaying o s c i l l a t i o n .  

Another means of a n a l y z i n g  t h e  decaying t r a n s i e n t  r e s p o n s e  i s  t h e  moving 
b l o c k  method, which e x t r a c t s  t h e  envelope of t h e  decay. A F o u r i e r  t r a n s f o r m  
i s  a p p l i e d  t o  a b l o c k  of d a t a  y ( t )  from t = T t o  t = T + T ;  t h e  magnitude 
of t h e  spectrum l i n e  a t  t h e  n a t u r a l  f requency w n ,  p l o t t e d  as a f u n c t i o n  of T,  

g i v e s  t h e  envelope and hence t h e  damping r a t i o .  S p e c i f i c a l l y ,  t h e  o p e r a t o r  

L = I1 JT+T (. . .) e -i2lru (t-T) d t
21r T 
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is applied to the response, yielding the function Y(T,v) = Ly(t). The 
magnitude of the expected value of 5; at the frequency v = wn is propro­
tional to the exponentially decaying envelope 

(see, e.g., refs. 5 or 11). The moving block analysis can also use analog 
components (a tracking filter locked to the frequency of the desired mode, an 
nns integrator, and a log converter). The slope of !LnIYI as a function of 
T gives the damping ratio of the dominant mode in the response. The princi­
pal advantage of the moving block analysis is that it extracts the frequency 
and exponential envelope from the decaying oscillation, which greatly facili­
tates the mechanization of the data processing task. Working in the frequency 
domain also reduces the effect of measurement noise, since only noise around 
the natural frequency wn is important. However, the moving block analysis 
involves a linear operator, which can have no fundamental influence on the 
normalized error (ref. 11). The response of the system to ?iis mainly a 
superposition of oscillations at the frequency wn, which is transmitted 
through the tracking filter along with the transient oscillation, so the 
moving block analysis has little effect on the process noise. 


Another approach is to curve-fit the measured response to an exponen­

tially decaying oscillation in the time domain. An iterative least-squared­

error technique is usually used, and a multimode curve fit may be implemented 

if necessary. Convergence problems are very likely with a high noise level, 

however. 


A good estimate of the damping can be obtained by the transient decay 

method with clean data. The moving block or tracking filter analysis helps by 

mechanizing the extraction of the damping ratio from the data, and by reducing 

somewhat the measurement noise due to the filtering. The accuracy of the 

damping estimate degrades rapidly as the noise increases, however. With sig­

nificant noise, it may be impossible to obtain any meaningful results. Often, 

the experimenter can do little to control the relative noise in the response 

measurement either. The error analysis above shows the only options are to 

increase the amplitude of the initial conditions or to reduce the process and 

measurement noise. Sometimes the noise can be influenced by the experimenter 

(e.g., by improving the rotor track or engine isolation to reduce the vibra­

tion or by conducting a flight test only under calm atmospheric conditions to 

minimize the process noise). In a wind tunnel, however, little can be done to 

reduce the turbulence, which is likely to be high at maximum speed. A sub­

stantial increase in the initial excitation is usually not practical either, 

because of structural or amplitude limitations in both the response and input. 

Clearly, to handle noisy data adequately, a different test technique is 

needed. 
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Error Analysis of Output Autospectrum Method 


To improve the accuracy of the system response measurement, the data must 
be averaged. One means by which such averaging can be introduced is to meas­
ure the response autospectrum. Consider a system excited by a random disturb­
ance, such as aerodynamic turbulence, which is not measured. Let SSk) (w) be 
the autospectrum of the kth measured time series of the response y. Then, an 
estimator of the true spectrum of the.responseis given by the ensemble 
average over K calculations of the spectrum: 

K 


k=1 


(ref. 12). The spectrum 5 can be obtained by digital or analog processing. 
With a digital processor an3 hardware FFT units, spectrum analysis is more 
convenient than autocorrelation analysis; also, working in the frequency 
domain is better suited for data reduction. 

Generally, the excitation of the system consists of multiple inputs (e.g., 

several gust components), so the output spectrum is related to the input 

spectra by 


where Hi is the transfer function between the response y and the ith input, 

and Svi is the (unknown) input autospectrum. For the system considered, Hi 

is a rational function, with the denominator D(w) - the characteristic equa­
tion - the same for all inputs. Thus, with Hi = Ni/D, 

i 


The poles of the characteristic equation, which give the modal frequency and 

damping, are of primary concern. S is seen to be a direct measure of D(w). 

The spectrum Sy depends also on txe characteristics of the input spectra. 

To obtain the properties of the system alone, the input spectra must be reason­

ably flat. This criterion is not too severe, since it need be applied only in 

the vicinity of the resonant peaks, which are very sharp for low-damped modes. 


A 

An analysis of the statistics of the estimator S of the autospectrum 
is available in the literature (see refs. 12 and 13). 'The expected value and 
variance of 2 are 

A M 2E?(u )  S(w)  + -24 S"(W) 
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where Au is the frequency resolution (in Hz) of the spectrum, and K the 
number of averages. These results, which are essentially independent of the 
statistical properties of the signal, are applicable to general random dis­
turbances. The normalized bias error is 

The most critical case is at a resonant peak, where the greatest accuracy is 
required and the curvature S" is largest. Assuming that, in the vicinity of 
the peak, the spectrum may be approximated by a single-degree-of-freedom sys­
tem, one obtains S/S"  (1/2)C2wn2. So, for a given bias error, the follow­
ing frequency resolution is required: 

Ao = %5wn 

Using a frequency resolution of Aw = (1/2)5~n gives Eb = 0.02, which is a 
negligible bias error compared to the usual variance levels (twice that reso­
lution is often satisfactory). The half-power bandwidth of the peak is 
A w 2  = 25wn, so this resolution corresponds to covering the bandwidth of the 
peak with four or five spectral lines. The sampling time for a single spec­
trum measurement is related to the frequency resolution (in Hz) by TO = l/Aw 
(ref. 12). Hence, the spectrum frequency resolution is an important test 
parameter, affecting both the bias error and test time. 

The bias error is easily made negligible by a proper choice of the 

frequency resolution. The remaining error is the normalized variance: 


This error is inversely proportional to the square root of the number of 
averages, a standard result for sample means. The estimate of the spectrum 
may thus be made as accurate as desired by increasing the number of averages. 
The total record length required for the spectral analysis is the product of 
the number of averages and the sample time for a single spectrum measurement, 
which gives 

T = - = - 1
K 
AU A w e 2  

'If N samples are collected at rate r, then the time required to 
obtain a single record is To = N/r. The maximum frequency in the spectrum is 
wmax = r/2 (the Nyquist frequency) and the number of spectral lines is N/2, 
so the frequency resolution of the spectrum is Aw = r/N = l/To. Then, the 
total sampling time with K averages is T = KTO = K / A u ,  giving K = TAU, or 
K = TBe in the notation of reference 12. 
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With the above result for the frequency resolution, T = 2/(r;w,~~); the total 
time over which data are collected must be increased as the damping, frequency, 

or error decreases. This sample time expression is a fundamental result for 

the amount of data required to estimate the statistics of a random signal. It 

is thus applicable to all no-input dynamic stability measurement techniques, 

such a5 correlation (which is simply a transform of spectral analysis to the 

time domain) or random decrement analysis (discussed below). 


To determine the system properties from the response spectrum, the input 
spectrum is generally assumed to be flat in the vicinity of each resonance, so 

Sy = IHI2Sv [HI2. For the low-damped modes that are of most interest, this 
assumption is required only over the narrow frequency range Aw/wn 2 25. 
Occasionally, the response spectrum can be corrected also for some known varia­
tions in the input spectrum. Data reduction then proceeds by treating S as 
the magnitude of the transfer function. For example, if Am2 is the half-
power bandwidth of the resonant peak (where the autospectrum 
fallen to one-half the peak value), then the damping ratio can 
from r; = Aw2/2wn. Alternatively, the damping ratio can be calculated by 
integrating the spectrum through the resonance 

1 lomSyw2 dw 

< = ­

nun3 ('Ylpeak 

(This expression can be used to estimate the damping of multimode systems as 

well by limiting the integration to a narrow range about each resonant peak.) 


Spectral analysis, by introducing averaging of the data, gives the 
experimenter control over the error level in the response measurement. How­
ever, techniques that measure only the output have two major difficulties. 
First, as seen above, the output spectrum depends not just on the system but 
also on the input characteristics, so there is always some uncertainty whether 
the system parameters are being correctly estimated. Second, the total record 
time to measure the spectrum accurately is often impractically long, particu­
larly for full-scale aircraft (which have low fundamental structural fre­
quencies). Consider, for example, a case with wn = 5 Hz, 5 = 0.02, and 
E = 0.2; the above expression gives T = 500 sec. 

An autocorrelation analysis is entirely equivalent to an autospectrum 

analysis, the former working in the time domain and the latter in the fre­

quency domain. The statistics of an autocorrelation measurement are thus sim­

ilar to the spectrum measurement statistics summarized above (see ref. 13). 

The method of random decrement signatures (randomdec) is another procedure 

for analyzing the response of a linear system to unmeasured random distur­

bances, designed to estimate the transient response of the system. The error 

statistics of the random decrement method are basically the same as for 

spectral analysis (see appendix). Spectral analysis, correlation, and random 

decrement techniques are all members of the general class of methods for 

analyzing the properties of a system using the response to an unknown random 
disturbance, with averaging to control the error level. A basic character­
istic of such methods is that a large amount of data is required to extract 

information accurately from the response signal; thus, for low-frequency 
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systems, the time to collect the data is very long. The examination of the 

autospectrum measurement method has shown the need for a procedure that is 

more efficient in reducing the error and that measures the characteristics of 

the aeroelastic system alone. 


Error Analysis of Transfer Function Method 

The accuracy of the measurement of the system response is further 
improved by measuring the input as well as the output. Beyond the influence 
of averaging the data, the error is also reduced by the correlation between 
the input and output; furthermore, the properties of the system alone are 
obtained, in the form of the transfer function between the output and the 
input. Usually, a measurable external input is applied specifically to excite 
the system for the flutter testing. The cross spec.trumbetween the input and 
output is found, in addition to the autospectra. The ratio of the cross 
spectrum and the input autospectrum then gives the transfer function H ( o ) ,  
from which the system parameters may be found. 

Consider again a linear system, but now with measurements of both the 

input and the output: 


-+
y = cz + 30 

+ - +  -+z - u + v i  


-+ -+Here, u is the random input to the system (which is measured), w is process 
noise (a random input that is not measured), and 30 and ??i are, respectively,

-+the output and input measurement noise. The measured response is y, and the
+ + +measured input is z. The noise sources w, VO, and 3, are assumed to be 
unknown random variables with zero mean. The transfer function H(w) is a 
matrix that defines the response to input at frequency w,  that is, for 

-f8 = 8oeiwt the response is y = H(w)zoeiwt. Then, 

(For the applications in this report, only a single input and output are used, 
so the transfer function is a single function, not a matrix.) Let Si!) be 
the cross spectrum between z and y from the kth measured time-series of data, 

and S2k) and S i k )  the corresponding autospectra. Then, an estimator of the 
transfer function H(w)  is given by the ratio of the averaged cross spectrum 
and input autospectrum 
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( r e f .  1 2 ) .  

An a n a l y s i s  of t h e  s ta t i s t ics  of t h e  e s t i m a t o r  fl i s  a v a i l a b l e  i n  t h e  
i i t e r a t u r e  ( r e f s .  1 2  and 1 3 ) .  The v a r i a n c e  of t h e  s p e c t r a  e s t i m a t o r s  gZy and 
S z  h a s  been d i s c u s s e d  p r e v i o u s l y  f o r  s p e c t r a l  a n a l y s i s .  The s t a t i s t i c s  of 
t h e  r a t i o  fi a re  d i f f e r e n t ,  however, due t o  t h e  c o r r e l a t i o n  between t h e  two 
s i g n a l s .  B i a s  e r r o r s  i n  are u s u a l l y  much less t h a n  t h e  random e r r o r s  ( a s  
l o n g  as t h e  f requency  r e s o l u t i o n  is  c h o s e n A p r o p e r l y ) ,  s o  t h e y  w i l l  n o t  b e  d i s ­
cussed.  The a n a l y s i s  of t h e  variance of H g i v e s  t h e  f o l l o w i n g  r e s u l t  
( r e f .  1 2 ) .  L e t  a b e  t h e  p r o b a b i l i t y  t h a t  t h e  magnitude of t h e  d i f f e r e n c e  
between t h e  estimate k ( w )  and t h e  t r u e  v a l u e  H(w) i s  g r e a t e r  t h a n  t h e  func­
t i o n  r ( w ) .  Thus, w i t h  c o n f i d e n c e  level (1 - a), H l i e s  w i t h  a c i r c l e  of  
r a d i u s  r about  2, 16 - HI < r ,  where 

Here, K i s  t h e  number of a v e r a g e s ;  Tzy is  t h e  estimate of t h e  input -output  
coherence f u n c t i o n  

and F2,2(K-l) ;a  i s  t h e  v a l u e  of t h e  F - d i s t r i b u t i o n  w i t h  2 and 2 ( K  - 1) 
d e g r e e s  of freedom a t  t h e  p r o b a b i l i t y  l e v e l  1 - a ( i . e . ,  t h e  p r o b a b i l i t y  t h a t  

’ F2,2(K-1);a i s  e q u a l  t o  a ;  see r e f .  10). For Parge K ,  t h e  
F - d i s t r i b u t i o n  may b e  approximated by F 2 , 2 ( ~ - l ) ; a  7 -Rn a. Hence, t h e  nor­
malized e r r o r  of t h e  estimate of t h e  t r a n s f e r  f u n c t i o n  ( n o t e  [ H I 2  = Sy/Sz) i s  

For a conf idence  leve l  of 95 p e r c e n t  (a = 0 . 0 5 ) ,  F 3.1; a t  t h e  9 7 . 5  p e r c e n t  
and 99 p e r c e n t  levels,  F 2 3.8 and 4.8,  r e s p e c t i v e l y .  Assuming a Gaussian 
d i s t r i b u t i o n ,  one s t a n d a r d  d e v i a t i o n  cor responds  t o  a conf idence  level  of 
68 p e r c e n t ,  which g i v e s  F = 1 .16 .  Hence, except  f o r  t h e  e f f e c t  of Tzy ,  t h e  
normalized e r r o r  would b e  c 2  1 / K ,  which i s  t h e  s a m e  r e s u l t  as f o r  t h e  
v a r i a n c e  of t h e  s p e c t r a  a l o n e .  

The coherence f u n c t i o n  TZ is  a measure of how w e l l  y and z are 
c o r r e l a t e d .  With no n o i s e  i n  txe system, pzy would b e  e x a c t l y  e q u a l  t o  1. 
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so, 1 - ?& is a measure of the effect of noise on the calculation of the 
response due to a particular input. For the system described above, this 

factor is approximately 


The first term is the ratio of the system response due to the process noise 
and the total response. The last two terms are the ratios of the measurement 
noise to the signal for the output and input, respectively. When qzy is 
near unity, which is accomplished by having a high signal-to-noise ratio in 
the frequency range of interest, the normalized error of the transfer function 
estimate is reduced much more than with averaging alone. Thus, the number of 
averages, and so the total measurement time, needed to obtain a specified 
error level is reduced by correlating the input and output measurements. 

The transfer function is thus an accurate and efficient measure of system 
response. The experimenter controls the error level through the number of 
averages, and only the properties of the system itself are obtained, since 
both the input and output are measured. If the input and output are corre­
lated ( s o  the coherence function yzy is near unity), then the data required 
to achieve a specified level of accuracy is reduced. (In the experiment dis­

cussed later in this report, the amount of data measured would have to be 

increased by a factor of 10 or 15 to achieve, by averaging alone, the accuracy 

obtained with the transfer function measurement.) Moreover, with the transfer 

function method, a quantitative estimate of the error level is available 

directly from the measured data 


I s z y l  
K - 1 

Hence, the dynamic stability measurement technique developed in this report is 

based on the system transfer function. 
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DAMPING RATIO FROM THE TRANSFER FUNCTION 


After measuring the transfer function, the experimenter must extract from 
H(w) the parameters defining the system dynamics, in particular the frequency 
and damping ratio of the low-damped modes. A method is required to estimate 
accurately wn and 5 from the data in the vicinity of a resonant peak. This 
task is no easy because of the rapid variations in the transfer function mag­
nitude and phase near the resonance, and because of the noisy transfer func­
tion data. A number of least-squared-error curve-fit techniques was 
considered (fitting the data to a circle on the phase plane, or to a parabola 
on the Re H-l vs.  Im H-l plane; or fitting the magnitude of the transfer 
function HI vs. w) . Least-squared-error techniques generally do not work 
well with noisy data, and so the attempts to develop an algorithm along these 
lines were not successful. Sometimes a good damping coefficient estimate 
could be obtained, but usually the results for the,dampingratio were poor, 
even with clean data. 

The method adopted for analyzing the transfer function data is based on 
integrating H(w)  through a resonant peak. The use of integrals of the data 
reduces the sensitivity to noise in H. Consider the transfer function for a 
single-degree-of-freedom, second-order system: 

where wn is the natural frequency, 5 the damping ratio, C the damping 

coefficient, and m the modal mass. Now 


so it follows that the damping ratio is given by 


1 (4mIm Hw dw) 
2 

5 = -
Ton Iom1HI2w2 dw 

and 


-jam Im Hw dw 
c =  lomlHI2w2 dw 

The parameters wn and 5 define the eigenvalue of a mode, which is a property 
of the system as a whole, not of the particular input-output pair considered, 
while the modal mass and damping coefficient are dimensional parameters that 
scale with y/z. 
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In practice, the system has many degrees of freedom; in any case, the 
data are available only over a finite frequency range. Thus,,the integration 
is really performed over a finite band around a particular peak: 
w = (1 - Af)wn to w = (1 + Af)wn, where the bandwidth Af is a parameter of 

where the subscript 0 refers to the truncated integral. 

In the vicin.ity of a low-damped resonance, the principal effect of other 
modes is an overall phase shift. The expression above for the damping ratio 
was derived for a transfer function having a phase at the peak (w = up) of 

To apply this expression for 5, it is therefore necessary to rotate the 
measured transfer function on the phase plane until the phase at the resonant 
peak is -90" (see ref. 6). This is accomplished by introducing the following 
correction when integrating Im H 

where Hp is the value of the transfer function at the peak (it is not 

necessary to correct the integral of /HI2,of course). 


Correction for Truncated Integration 


The effect of the finite limits of integration is that 5 ,  is less than 
the true damping ratio. To correct for the truncation of the integration, let 

5 = K C O ;  then 

dw 

~ 

,2 dw w 2  dw
D D 

where D = (wn - w 2 ) 2  + (2<w,~)~. The integral in K can be evaluated 
analytically. Figure 1 shows the function K, obtained from calculations for 
various values of 5 and Of; K is essentially a function of </Af alone (or 
equivalently, Co/Af). A good approximation, which can be easily implemented, 
is 
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( s e e  f i g .  1). The f i r s t  term i s  based on a n  e v a l u a t i o n  of  K f o r  s m a l l  r;/Af; 
t h e  second term is added t o  account  f o r  t h e  v a r i a t i o n  up t o  about  c/Af = 2. 
The e x p r e s s i o n  f o r  t h e  damping c o e f f i c i e n t  C does  n o t  r e q u i r e  c o r r e c t i o n  f o r  
t h e  f i n i t e  l i m i t s  of i n t e g r a t i o n .  

Numerical I n t e g r a t i o n  

The t r a n s f e r  f u n c t i o n  d a t a  are a v a i l a b l e  a t  d i s c r e t e  f r e q u e n c i e s ,  w i t h  
s e p a r a t i o n  Aw.  E v a l u a t i n g  t h e  i n t e g r a l s  n u m e r i c a l l y  g i v e s  t h e n  

where t h e  summation e x t e n d s  o v e r  t h e  d e s i r e d  f requency  range .  The t r a p e z o i d a l  
r u l e  

J W O  

dw,a p p l i e d  t o  c 0  = ( 1 / ~ ) 4 < ~ w ~ J ( w ~ / D )g i v e s  t h e  i n t e g r a t i o n  e r r o r  

Now, t h e  number of  i n t e g r a t i o n  s t e p s  i s  M = 2Afun/Aw; and t h e  i n t e g r a n d  
c u r v a t u r e  i s  (w2/D)" -l/(2C4wn4) a t  t h e  peak. Thus 

The r e q u i r e d  f requency  r e s o l u t i o n  f o r  a c c u r a t e  i n t e g r a t i o n  i s  t h e n  

With Af = 0.1  and Aso = 0.001 ( a  v e r y  good bound on t h e  accuracy  i n  ca lcu­
l a t i n g  <o), t h e  requirement  i s  Aw/5wn 0.3. T h i s  is  expec ted  t o  b e  a COG­

servative estimate, s i n c e  t h e  c u r v a t u r e  of  t h e  spectrum a t  t h e  peak is  used 
o v e r  t h e  e n t i r e  range  t o  o b t a i n  A ~ o .  Indeed,  t h e  r e s u l t s  of numer ica l  simu­
l a t i o n s  o f  t h e  a l g o r i t h m  i n d i c a t e  t h a t  A w / < w n  5 0 . 7  i s  adequate  f o r  n e g l i ­
g i b l e  b i a s  i n  5 due t o  t h e  i n t e g r a t i o n  e r r o r .  R e c a l l  t h a t  t h e  c r i t e r i o n  f o r  
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negligible bias in measuring the spectra has exactly the same form, 

Aw/5wn 5 constant. In general, the spectrum estimate bias is the stricter 

criterion, so satisfying it ensures the accuracy of the numerical integration 

in the damping ratio algorithm. 


Natural Frequency 


The other parameter required to define the eigenvalue is the natural 
frequency wn. The data available is the frequency wp at the resonant peak. 
The natural frequency wn is somewhat higher than wp (an = wp//l - 252); 
moreover, the true peak frequency is not what is available, since the transfer 
function is known only at points Aw apart. Based on the approximation 
[HI2= {2wn2m[S2 + (w/wn - 1)2])-1 near the resonance, a corrected estimate 
of the natural frequency is 

Aw HP~(HR~-~ -HL~) . ... . ­wn = up + -
2 Hp2(HR2 + HL2, - 2HR2HL2 

where Hp = /Hi at w = wP' and HR,L = /HI at w = up k Aw. Numerical 
simulations of the damping ratio algorithm show this expression gives 0, 

quite well. 


Alternative Expressions 


If only the magnitude of the transfer function is available, the damping 

ratio and damping coefficient may be obtained from 


and 


where lHpl is the value at the resonance peak. The ideal transfer function 
also gives C = -1m H//HI2w for all frequencies (assuming negligible phase 
shift due to other modes). These expressions using the transfer function 
magnitude alone are also useful when the phase is distorted by other modes. 

Often, accelerometer measurements are used, rather than displacement or 
strain gage measurements. The damping ratio calculations may be applied to 
such data by simply using Ha = -w2H, so 

16 A-6800 




and similarly for the other expressions. 


Damping Ratio Algorithm 


In summary, the damping ratio and natural frequency are obtained from the 
transfer function H(w) as follows. The frequency up of a resonant peak is 
identified by examining the transfer function. Then, wn and 3 are calculated 
by the following expressions 

wn = wp + -Aw -
- HL~) 

HP~(HR~+ HL~)- ~ H R ~ H L ~  

1 +  0.6366 0.6817 
< =  [ Af ‘0 -I- (Af/2)4 ‘0 

Similar expressions are given above to calculate the damping coefficient C, 
or to use the magnitude of the transfer function alone. Numerical simulations 
of the algorithm indicate that the calculations are not very sensitive to the 
choice of the integration bandwidth Af. Typically, a value Af = 0.1 is 
used, or less if necessary to avoid a neighboring resonance. (Note that the 
ratio of the integration bandwidth to the 1/2-power bandwidth equals Af/<.) 
Also, the correction for the finite limits of integration is an approximation 
valid up to about </Af = 2, as shown in figure 1. The use of calculations 
based on the magnitude of the transfer function alone is recommended when a 
large distortion of the phase is due to other modes, to the extent that no 
circle on the phase plane exists, even approximately. This is often necessary 
for the higher modes of a system due to the increased modal density. Other­
wise, the integral of the complex-valued transfer function should always be 
used, since it is less sensitive to noise in the data (particularly in IHpl). 
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TRANSFER FUNCTION MEASUREMENT 


A typical test setup for the measurement of a system transfer function is 
shown in figure 2. A random signal generator provides the control input. The 
signal goes through a bandpass or lowpass filter so that the input energy is 
concentrated in the frequency range of interest. After establishing the test 
conditions and setting the signal generator parameters, the input is intro­
duced into the system by increasing the potentiometer setting from zero, while 
monitoring the input and response. The input level finally established 
depends on what is required for a good signal-to-noise ratio, on the control 
actuator limits, and on the limitations of the system response. The potentiom­
eter also quickly but smoothly removes the excitation, if necessary, such as 
for safety. Having established the excitation of the system, the online data 
analysis proceeds, beginning with the measurement of the transfer function 
between the input and some response. (The input signal may also be obtained 
from a transducer in the system, such as a servo position or load cell. In 
that case, the transfer function does not include the response of the input 
mechanism. The original input signal is used mainly when such an input meas­

urement is not available, or when it shows a high level of measurement noise.) 

After the transfer function is measured, the excitation is removed by turning 

down the potentiometer. Then, the system parameters are calculated from the 

transfer function, perhaps while other testing takes place at this condition. 

After the stability level is obtained, and any significant trends assessed, 

the test condition may be changed. 


The transfer function may be measured in many ways. A digital computer 
offers great flexibility in obtaining the response data, and is essential for 
implementing the algorithm for extracting the system parameters from the data, 
even an algorithm as simple as the one used here. (A special purpose analog 
or hybrid computer could be constructed to do the job, but with considerable 
l o s s  in flexibility.) A practical approach is to use a minicomputer system 
with specialized hardware devices, such as FFT and array processors. 

Figure 3 outlines the procedure for measuring the transfer function and 
calculating the modal frequency and damping according to the algorithm devel­
oped in this report. While the random excitation of the system takes place, 
the selected input and output signals are sampled and digitized at a rate of 
r/sec. N samples are collected for each channel. The discrete Fourier 
transform is then applied to each of the two blocks of data. It is also con­
venient at this point to convert the signals to engineering units. From the 
Fourier transforms of the input and output are obtained the autospectra and 
cross spectrum of the kth time series of data. The steps of data collection, 
Fourier transform, and spectra calculation are repeated K times, and the 
spectra averaged over the K records. Finally, the transfer function is 
obtained from the ratio of the averaged cross spectrum and the input auto-
spectrum, and the error estimate E is calculated according to the expression 
given earlier. At this point, system excitation may be removed. 

Data analysis commences by examining the transfer function and designa­

ting the frequency for a particular resonant peak. Then, the natural fre­

quency and damping ratio are calculated, using the algorithm developed above 
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(the damping coefficient and modal mass may also be calculated if required). 
This analysis is repeated for all modes observable in the transfer function, 
and the resulting modal parameters are recorded. Finally, the transfer func­
tion, autospectra, and normalized error may be examined and recorded as 
desired. 

The parameters defining the transfer function measurement are the sample 
rate r, the sample size N, and the number of averages K. The discrete 
spectra then have N/2 lines, with a maximum frequency %ax = r/2 Hz (the 
Nyquist frequency). Thus, the frequency resolution is Aw = r/N Hz. The time 
required for a single record is TO = N/r = l/Aw, and the total test time is 
T = K / A w .  The considerations governing the choice of r, N, and K will now 
be discussed (see also refs. 12 and 13). 

The sample rate r should be about 2.5 times the bandwidth of interest. 
The last 20 percent of the resulting transfer function is therefore dis­
regarded to allow for aliasing. Anti-aliasing filters, with a sharp cutoff at 
%ax = r/2, should also be used. Generally, the modes of interest should 
occur roughly in the middle of the spectrum. Data near the maximum frequency 
are suspect because of aliasing; data near zero frequency are suspect due to 
bias error. A system with many modes over a wide frequency range can be 
analyzed in successive runs with different bandwidths and frequency 
resolutions. 

The number of samples N equals r/Aw, so the choice of N is deter­
mined by the required frequency resolution A w .  The primary consideration in 
choosing Aw is the bias error in the transfer function. The preceding dis­
cussion showed that Aw = (1/2)Gwn to sun is required; the lower limit is 
usually conservative, so a value near the upper limit is typical. With a 
resonance in the middle of the spectrum (r 4wn), the sample size should be 
N = r/Aw a ( 4  to 8 ) / ~ ,  or N around 400 for a low-damped mode. Typically, 
N = 256 o r  512 gives the required frequency resolution. In practice, the 
required sample size N should be established by trying two or three values 
at the beginning of the test, until a value for N is found that gives no 
noticeable bias error in H(w) (the resonant peak amplitudes are the primary 
criterion). 

The final parameter chosen is the number of records K, or equivalently 
the total data collection time T. In general, as many averages as possible 
are desired for the smallest error level; if necessary, the number of samples 
N could be reduced to shorten the test time. The averages required should be 
established by trying several values early in the test, and examining the 
error level as indicated by the normalized error E ,  noise in H ( w ) ,  and vari­
ations in the resulting parameters (especially the damping ratio). For a full-
scale aeroelastic system, with low fundamental frequencies, the number of 
averages used is normally a compromise between what one would like for very 
low error and the requirements of an acceptable total test time. The more 
information that can be obtained from the data, the greater the justification 
for a longer test time. 
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EXAMPLE OF APPLICATION 

To demonstrate the application, the transfer function dynamic stability 
measurement technique was used in the flutter testing of a proprotor and 
cantilever wing model in a wind tunnel (fig. 4 ) .  The three-bladed, gimballed 
stiff-inplane rotor had a diameter of 0.86 m, and was operated at a speed of 
52 = 22.67 Hz (1360 rpm). The model was unpowered and hence was operating in a 
windmilling condition. The model was tested in the MIT Wright Brothers Wind 
Tunnel in axial flow over a speed range of V/RR = 0.34 to 0.69 (where V was 
the forward speed and RR was the rotor tip speed). The rotor controls con­
sisted of collective and cyclic pitch actuators. The pylon also had a shaker 
vane (see fig. 4) that was used to excite the wing bending; the shaker vane 
was equivalent in effect to a wing flaperon. The fundamental wing frequencies 
were approximately 8.2 Hz (0.36/rev) for vertical bending, and 12.5 Hz 
(0.55/rev) for chordwise bending. ("Vertical" bending refers to the wing 
motion on the airplane, not to the orientation used in the wind-tunnel test.) 
Basically, the shaker vane was used to excite the wing vertical bending mode, 
and rotor collective pitch was used t o  excite the wing chordwise bending mode. 
Rotor cyclic excitation was also tried. Reference 14 gives complete details 
of the model. 

The proprotor and cantilever wing configuration is characterized by an 
aeroelastic instability at high inflow ratio due to the coupled motion of the 
rotor and wing. Thus, with this model, it was necessary to measure the fre­
quency and damping of the fundamental wing modes, vertical and chordwise bend­
ing, as a function of tunnel speed. What was desired in such a test was 
sufficient accuracy to detect trends in the stability so that the flutter 
boundary could be avoided, and enough information to allow correlation with 
stability predictions. Figure 5 shows typical results of the transient decay 
technique for this model. A scatter in the damping ratio data of A <  = 0.01 
or more was characteristic, so little useful information could be obtained 
with this method. The difficulty, which is typical of wind-tunnel testing, 
was that the response to tunnel turbulence obscured the transient, especially 
at high speed where the flutter measurement was most critical. Often there 
are more degrees of freedom involved than with this model, which makes it more 
difficult to produce and interpret the transient decay traces. Thus, the 
transfer function technique was used with this model to control the error 
level and thus obtain sufficiently accurate measurements of the system damping. 

Figure 6 shows the time history and autospectrum of the input signal used 
to measure the system transfer function. The input was white noise sent 
through a 3 to 12 Hz bandpass filter. Figure 7 gives the corresponding rms 
levels of the shaker vane and collective pitch used to excite the system. The 
level used was determined by the requirements for a significant response level, 
and the limitations on blade and wing ;Loads. The shader vane rms excitation 
was 1.5 to 2 deg, and the collective pitch was 0.25 to 0.75 deg; cyclic pitch 
was also used, at a level of about 0.25 deg (the cyclic pitch input was 
limited by an infinite-life blade load restriction). The one-half peak-to­
peak level was around 3 to 4 times the rms value. These various control 
inputs were applied not simultaneously, but in sequential test points. Fig­
ure 8 shows the resulting time histories of the wing and rotor motion, 

20 A-6800 




comparing t h e  cases w i t h  and w i t h o u t  t h e  e x t e r n a l  e x c i t a t i o n  ( a t  V/OR = 0.69) .  
F i g u r e  9 g i v e s  t h e  cor responding  rms levels  of  t h e  wing v e r t i c a l  and chordwise 
bending r e s p o n s e  ( o r  one-half  peak-to-peak, which is  3 o r  4 t i m e s  t h e  r m s  
level ;  o n l y  t h e  re la t ive  v a l u e s  w i t h  and w i t h o u t  t h e  i n p u t  are of concern h e r e ) .  
The wing r e s p o n s e  w i t h  e x t e r n a l  e x c i t a t i o n ,  used i n  t h e  measurement of t h e  
t r a n s f e r  f u n c t i o n ,  w a s  2 o r  3 t i m e s  t h e  r e s p o n s e  due t o  t h e  e x i s t i n g  t u n n e l  
t u r b u l e n c e  ( t h e  p r o c e s s  n o i s e ) .  G e n e r a l l y ,  t h e  a c t u a l  c o n t r o l  p o s i t i o n  w a s  
used as t h e  i n p u t  measurement b u t ,  f o r  a couple  of  t h e  c o l l e c t i v e  e x c i t a t i o n  
p o i n t s ,  i t  w a s  n e c e s s a r y  t o  u s e  t h e  o r i g i n a l  s i g n a l  t o  t h e  a c t u a t o r .  Fig­
u r e  10 shows t h e  t r a n s f e r  f u n c t i o n s  of t h e  r o t o r  and s h a k e r  vane c o n t r o l  ac tu­
a t o r s  ( t h e  response  magnitude h a s  a l i n e a r  s c a l e ) .  The r o t o r  c o n t r o l  ac tua­
t o r s  had a r e s p o n s e  f l a t  enough t h a t  i t  need n o t  b e  c o n s i d e r e d  i m o b t a i n i n g  
t h e  system t r a n s f e r  f u n c t i o n .  

The model w a s  t e s t e d  a t  f o u r  speeds  by s u c c e s s i v e l y  e x c i t i n g  t h e  shaker  
vane,  r o t o r  c o l l e c t i v e ,  and r o t o r  c y c l i c  p i t c h  c o n t r o l s .  The i n p u t  ( c o n t r o l  
p o s i t i o n )  and o u t p u t  (wing bending)  s i g n a l s  w e r e  s e n t  th rough 25 H z  low-pass, 
a n t i - a l i a s i n g  f i l t e r s .  The s i g n a l s  w e r e  sampled a t  a r a t e  of  r = 51.2 H z ,  
w i t h  N = 512 samples c o l l e c t e d  f o r  a s i n g l e  r e c o r d .  The s p e c t r a  w e r e  aver­
aged o v e r  K = 17 t o  20 r e c o r d s .  Thus, t h e  s p e c t r a  bandwidth w a s  
%ax = 25.6 H z ;  t h e  f requency  r e s o l u t i o n ,  Am = 0 . 1  H z ;  t h e  t i m e  f o r  a s i n g l e  
r e c o r d ,  To = 1 0  sec; and t h e  t o t a l  d a t a  c o l l e c t i o n  t i m e ,  T = 170 t o  200 sec. 
The damping r a t i o  c a l c u l a t i o n  used Of = 0.1.  F i g u r e s  11 t o  13 p r e s e n t  t h e  
measured t r a n s f e r  f u n c t i o n s  a t  t h e  f o u r  speeds ,  f o r ,  r e s p e c t i v e l y ,  wing ve r t i ­
c a l  bending r e s p o n s e  t o  shaker  vane,  chordwise bending r e s p o n s e  t o  c o l l e c t i v e ,  
and v e r t i c a l  bending r e s p o n s e  t o  c y c l i c .  The v e r t i c a l  scale of t h e  t r a n s f e r  
f u n c t i o n  magnitude i s  l i n e a r .  The resonances  of  t h e  fundamental  wing modes 
are c l e a r l y  e v i d e n t .  The scales of t h e  t r a n s f e r  f u n c t i o n  magnitude p l o t s  are 
n o t  t h e  s a m e  i n  a g i v e n  f i g u r e ;  t h e  d imens iona l  magnitude i s  n o t  r e l e v a n t  f o r  
t h e  p r e s e n t  purposes  anyway. F i g u r e  14 g i v e s  examples of t h e  t r a n s f e r  func­
t i o n  on t h e  phase p l a n e  (Re H vs. I m  H ) ;  t h e  c i r c l e  i s  c h a r a c t e r i s t i c  of a low-
damped resonance .  F i g u r e  1 5  shows t h e  t r a n s f e r  f u n c t i o n  e r r o r  e s t i m a t e s  
o b t a i n e d  from t h e  d a t a .  The number of a v e r a g e s  K = 1 7  t o  20 g i v e s  a b a s i c  
e r r o r  l e v e l  of E a 0.25. The lower v a l u e s  of E observed i n  f i g u r e  1 5  are 
t h e  r e s u l t  of c o r r e l a t i o n  between t h e  i n p u t  and o u t p u t ;  t h e  r e d u c t i o n  i n  E 

o c c u r s  where t h e r e  i s  a s i g n i f i c a n t  i n p u t  level .  To o b t a i n  t h i s  e r r o r  l eve l  
by averaging  a l o n e  would r e q u i r e  1 0  o r  1 5  t i m e s  t h e  d a t a  c o l l e c t e d  h e r e ,  which 
would r e q u i r e  a p r o h i b i t i v e l y  long  tes t  t i m e ,  even f o r  a small-scale model. 
The e f f i c i e n c y  of t h e  t r a n s f e r  f u n c t i o n  measurement i s  clear.  

F i n a l l y ,  f i g u r e  16 p r e s e n t s  t h e  f requency  and damping of t h e  two wing 
modes o b t a i n e d  from t h e  t r a n s f e r  f u n c t i o n  measurement by t h e  a l g o r i t h m  devel­
oped i n  t h i s  r e p o r t .  For  t h e  wing v e r t i c a l  bending,  two measurements of t h e  
damping are a v a i l a b l e :  from t h e  shaker  vane and r o t o r  c y c l i c  p i t c h  e x c i t a t i o n .  
A t  h i g h  speed,  t h e  s h a k e r  vane  r e s u l t s  are cons idered  more a c c u r a t e ,  as i n d i ­
c a t e d  by t h e  l i n e  connec t ing  t h e  d a t a  i n  f i g u r e  16.  T h i s  c h o i c e  i s  based on 
t h e  t r a n s f e r  f u n c t i o n  e r r o r  levels  found a t  h i g h  speed ,  as shown i n  f i g u r e  15. 
The c y c l i c  t r a n s f e r  f u n c t i o n  shows a h i g h  e r r o r  (due t o  l i m i t a t i o n s  on t h e  
c y c l i c  i n p u t  l e v e l ) ,  w h i l e  a t  low speed i t  shows a n  e f f e c t  of t h e  input -output  
c o r r e l a t i o n  s i m i l a r  t o  t h a t  observed i n  t h e  shaker  vane  t r a n s f e r  f u n c t i o n .  
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This is an excellent example showing how the transfer function method cannot 

only control the error level but also directly assess it, and thus allow the 

experimenter to determine directly the most accurate measurements. 


CONCLUDING REMARKS 

The error statistics of several dynamic stability measurement techniques 
have been reviewed. The value of the transfer function measurement lies in 
the capability it gives the experimenter to control the error level, through 
averaging of the data and correlation between the input and output. Thus, a 
satisfactory e'kror level may be achieved with a practical total test time. 
The characteristics of the system alone are obtained, independent of the input 
statistics (assuming an adequate bandwidth of the input spectrum). Moreover, 
the measured data give directly a quantitative estimate of the normalized 
error in the transfer function, which is extremely important in assessing the 
quality of the data. Thus, the transfer function is the basis for an accurate 
and efficient measurement of the system characteristics. An algorithm for 
obtaining the modal frequency and damping from the transfer function has been 
developed. The development of the test technique concluded by summarizing the 
rules for selecting the parameters involved in the transfer function 
measurement. 


The method developed here has two principal limitations. First, only a 
single-input, single-output transfer function was considered. Second, the 
data reduction algorithm is based on the response of a single-degree-of­
freedom, second-order system; so, for multimode systems it is generally 
limited to analyzing the fairly low-damped modes. That is the most important 
information for flutter testing, but still the algorithm is only approximate, 
and the resulting information about the system is not complete. These limita­
tions are fairly common in flutter-testing techniques. Therefore, a further 
development of the data reduction procedures would be desirable. The transfer 
function would still remain the basis of the stability measurement, providing 
the fundamental error control. The analysis procedure should handle multi­
output, multi-input data; and it should completely and accurately identify all 
the poles and zeros of the system. Such a parameter identification algorithm 
would require more computational flexibility for the data analysis than the 

algorithm in this report. The major difficulties lie in developing an algo­

rithm that accurately and efficiently obtains the system parameters from noisy 

data and that is still applicable for on-line analysis in flutter testing. 


The assumptions inherent in the use of a transfer function representation 

are that the system is linear and time-invariant. These assumptions are quite 

satisfactory in practice, but time-invariance leads to further problems with 

rotorcraft testing. To have a time-invariant (constant coefficient) system 

often requires nonrotating degrees of freedom representing the rotor motion, 

which in turn requires that the motion of all the rotor blades be measured. 

Such complete measurements are seldom available; usually, only one blade is 

instrumented. What is required in such cases is a filter (i.e., an output 

error estimation method) that estimates the nonrotating states of the rotor 
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from measurements of the individual blades in the rotating frame, especially 

with data from only one or two of the blades. Then, the transfer function 

methods may be applied. 


Ames Research Center 
National Aeronautics and Space Administration 

and 
Ames Directorate, USAAMRDL 

Moffett Field, Calif., 94035, April 1, 1977. 
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APPENDIX 

ERROR ANALYSIS OF THE METHOD OF RANDOM 

DECREMENT SIGNATURES 

The method o f  random decrement s i g n a t u r e s  (randomdec) is  a procedure 
developed by Cole ( r e f .  15) f o r  a n a l y z i n g  t h e  r e s p o n s e  of a l i n e a r  system t o  
random d i s t u r b a n c e s .  The procedure  i s  des igned  t o  estimate t h e  t r a n s i e n t  
r e s p o n s e  of t h e  system. T h i s  appendix a n a l y z e s  t h e  e r r o r  s ta t i s t ics  of t h e-
random decrement s i g n a t u r e s .  The randomdec e s t i m a t o r  y i s  d e f i n e d  as t h e  
ensemble average  of t h e  response  t o  e x i s t i n g  random d i s t u r b a n c e s  

k=1 

A s  u s u a l ,  t h e  e r g o d i c  h y p o t h e s i s  is  used ,  and t h e  random decrement s i g n a t u r e  
i s  o b t a i n e d  by a v e r a g i n g  r e c o r d s  t h a t  are s e q u e n t i a l  i n  t i m e  

k=1 

The r e c o r d s  are assumed t o  b e  u n c o r r e l a t e d ,  which is  g e n e r a l l y  t r u e  i f  t h e r e  
i s  no o v e r l a p  ( r e f .  1 5 ) .  The key t o  t h e  procedure  i s  t o  se lec t  each ensemble 
-+ 
yk w i t h  t h e  same i n i t i a l  c o n d i t i o n s  by a n  a p p r o p r i a t e  t r i g g e r i n g  method. 
Then, a l l  r e c o r d s  have a n  i d e n t i c a l  t r a n s i e n t  due t o  t h e  i n i t i a l  c o n d i t i o n s ,  
w h i l e  t h e  subsequent  n o i s e  a v e r a g e s  o u t .  

-+ Consider  a g a i n  t h e  l i n e a r  sys tem i x = A S  + d,  and response  measurement 
y = C z  + 3, e x c i t e d  by t h e  unknown random d i s t u r b a n c e  6,w i t h  measurement+ -+n o i s e  v. Assume t h a t  u and have z e r o  mean. The s o l u t i o n  u s i n g  t h e  i n i ­
t i a l  c o n d i t i o n s  a t  t i m e  t o  i s  

+The o b s e r v a t i o n  y ( t )  is  t h u s  a random p r o c e s s ,  depending on t h e  random vari­+ +a b l e s  u ,  v ,  and % ( t o ) .  The expected v a l u e  of t h e  random decrement s i g n a t u r e  
i s  t h e n  

k= 1 

Here, t h e  i n i t i a l  c o n d i t i o n  2 ( t 0 )  i s  a s t a t i o n a r y  random v a r i a b l e  w i t h  
-t -

expec ted  v a l u e  xo = E s ( t 0 ) .  Hence, y i s  a n  unbiased  e s t i m a t o r  of t h e  system 
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transient response. It also follows that 7 depends on the trigger procedure,-+which determines X O .  Clearly, the frequency content of the random disturb­
ance must be sufficient to excite the modes of interest, for %o must be+selected from the steady-state response to u. Moreover, the trigger process 
must be such that there are nonzero initial conditions for the modes of inter­
est. The usual procedure is to trigger the start of the ensemble on a fixed, 
nonzero level of the response y, with either positive or negative slope. 
Cole (ref. 15) suggests a trigger level of y = 1.0 to 1.6 oy (where ay is 
the rms level of the response). 

-
The variance of the random decrement signature y is 


Vy = Ey2 -

Here, it has been assumed that u and v are uncorrelated; that the measure­

ment noise covariance is R; and that the excitation 2 is white noise with 

E;(T~)??(T~) = Q6 (TI - ~2). The ensembles are uncorrelated, except for the+initial+conditions. The triggering process determines x(t0), with expected 
value xo = E?$(tO), and variance VXO = E2(to)gT(to) - gog;. (The steady-+state response of the system to the disturbance u has zero mean and variance
-+ax2 = Ez(t)zT(t), which is n o t  the same as xo and VXO due to the procedure 
for selecting the initial time to.) The second term in Vy is the same 
error as found for the transient decay, divided by the number of averages K. 
It follows that for a signature with a transient that decays to a fraction f 
of its initial value, this term gives a maximum error approximately 

2 
(f-2 - 1) + -r f-21 

X02 


(cf. the analysis above for transient decay). So, the ensemble averaging 
reduces the error in the transient due to the response of the system to the 
random disturbance u subsequent to the time to where the initial condi­
tions are determined. As usual, the error is inversely proportional to the 
square root of the number of  averages. This error source can be made as small 
as required by increasing the number of averages. (Here, the experimenter 
does not have control of aX/xo, since xo must be obtained from the time 
series with rms level a,; generally, aX/xo P 0.5 to 1.) 

The remaining term in Vy depends upon the variance of the initial con­

ditions VXO. Both this term and decrease with time at the same rate,
-
so the normalized error in y always has about the same value, equal to the 

normalized error in z(t0) 
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The ensemble averaging does not affect this term, so an accurate response

-tmeasurement depends upon keeping the variance of x(t0) as low as possible. 

The triggering process is required to select to based on the measurement of+ +y, such that x = XO. An error in 7 results unless exactly the same initial 
conditions are produced by every triggering event. The sources of the vari­
ap.ce VXO include: variation in the trigger mechanism or algorithm; several 
modes observable in y; and measurement noise in y. The measurement noise is 
probably the most important problem; with a trigger based on y, the measure­
ment noise covariance must give a lower bound on Vxo. With high measurement 
noise, the experimenter can do little to control the error in the random decre­
ment signature estimate of the transient response. Increasing the number of 
averages does not influence this error; the trigger level cannot be increased 
much without increasing the correlation of the records (ref. 15); and it is 

-fnot often possible to increase the excitation u relative to the measurement 

noise 8. 


Finally, consider the total amount of data required. The time for a 
single record, with decay to a fraction � of the initial value, is 
TO = -Rn f/(2.rr<wn). Then, assuming that the VXO error is negligible, the 
total sample time required is 

T = KTO constant 
5WnE2 

This is the same result as for spectral analysis (allowing for a somewhat dif­
ferent meaning of E; see also ref. 15). It is the general result f o r  the 
amount of data required to estimate the statistics of a random signal. As for 
spectral analysis, for a given T it is necessary to compromise between fre­
quency resolution and the number of averages. Typical applications of the 
random decrement signature procedure require K = 2000 to 8000 averages for 
satisfactory accuracy (refs. 15 and 16). Data processing for the randomdec 
method follows the lines discussed for obtaining the damping from a transient 
decay trace, with improved accuracy due to the ensemble averaging. Analysis 
in the time domain is rather more sensitive t o  noisy data than analysis in the 
frequency domain, but it has been successfully implemented in practice. 

As with autospectral analysis, there are two basic difficulties with the 

method of random decrement signatures. First, there is some uncertainty 

whether only the properties of the aeroelastic system are being estimated 

(because only the system output is measured). In particular, the initial con­

dition variance is an error source that can neither be controlled by averaging 

nor be estimated directly from the experimental data. Second, the total meas­

urement time required to obtain accurate estimates of the system properties is 

likely to be very long. This large amount of data required to extract informa­

tion accurately from the signal is the basic characteristic of the class of 

methods utilizing response measurements alone. For further discussion for the 

random decrement statistics, see reference 11. 
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F igure  1.- C o r r e c t i o n  of i n t e g r a l  i n  damping r a t i o  c a l c u l a t i o n  for f i n i t e  
limits of  i n t e g r a t i o n ;  5 = K O .  
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F igure  1.- C o r r e c t i o n  of i n t e g r a l  i n  damping r a t i o  c a l c u l a t i o n  for f i n i t e  
limits of  i n t e g r a t i o n ;  5 = K O .  
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Figure 2.- Typical test setup to measure system transfer function. 
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Figure 3 . - Outl ine of 
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Discrete Fourier Z Calculate 
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units s y  =zxz 

Examine H and Calculate transfer 
designate 4 ;; function 

resonant peak H=aver.Sy,/aver. S, 

Examine and 
record H, S,, 
S,, and E 

dynamic s t a b i l i t y  measurement procedure based on t h e  
t r a n s f e r  func t ion .  



w 
N 

F i g u r e  4.- P r o p r o t o r  and c a n t i l e v e r  wing model i n  MPT Wright B r o t h e r s  Wind 
Tunnel ( r o t o r  d iameter  0.86 m - n o t e  t h e  shaker  vane on top  o f  t h e  
model). 
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Wing vertical 
bending 
(V/CiR = .69) 

Wing chord 
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(V/!2R = .69) 
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F i g u r e  5.- Examples of t r a n s i e n t  decay traces f o r  t h e  p r o p r o t o r  and wing model. 

33 




1 

Time history 

0 4 
t (sec) 

0 

Auto - dBspectrum 

-25 
0 20 

Figure 6.- Time history and autospectrum of input for transfer function 

measurement. 
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F i g u r e  7.- RMS l e v e l s  of shake r  vane  and rotor c o l l e c t i v e  p i t c h  i n p u t s  used t o  
excite t h e  model. 
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Figure  8.- T i m e  h i s t o r i e s  of wing and r o t o r  r e sponse  w i t h  no i n p u t  (wind­
t u n n e l  t u r b u l e n c e  on ly )  and w i t h  e x t e r n a l  i n p u t  t o  e x c i t e  t h e  model a t  
V/RR = 0.69.  
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Figure  9 . - Leve l s  of wing bending r e sponse  w i t h  and wi thou t  t h e  e x t e r n a l  
i n p u t s  ( r e l a t i v e  t o  t h e  maximum response  encountered) .  
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Figure 10.- Transfer functions of the shaker vane and rotor control system 

actuators. 
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Figure  11.- Measured 
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t r a n s f e r  f u n c t i o n s  of wing v e r t i c a l  bending response  t o  
shake r  vane e x c i t a t i o n .  
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Figure  12 . - Measured t r a n s f e r  f u n c t i o n s  of wing chordwise bending response  t o  
c o l l e c t i v e  p i t c h  e x c i t a t i o n .  
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Figure 13.- Measured transfer functions of wing vertical bending response to 

rotor cyclic pitch excitation. 
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92 / e o  
(V/SZR = .69) 

F i g u r e  14.- T y p i c a l  t r a n s f e r  f u n c t i o n s  on 
bending response  t o  shaker  vane (q1/6F)  
response  t o  c o l l e c t i v e  p i t c h  (q, /e , )  a t  

0 
Real H 

0 
Real H 

t h e  phase p l a n e  f o r  wing v e r t i c a l  
and f o r  wing chordwise bending 

V/RR = 0 . 6 9 .  
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Figure  15.- T r a n s f e r  f u n c t i o n  e r r o r  es t .  -e f o r  wing ve r t i ca l  bending 
response  t o  s h a k e r  vane ( q l / S , ) ,  f o r  J rdwise  bending r e s p o n s e  t o  
c o l l e c t i v e  p i t c h  (q2/Oo),  and f o r  wing veLkLcalbending r e s p o n s e  t o  
r o t o r  c y c l i c  (q1/OlC) a t  V/RR = 0.69. 
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F i g u r e  16.- N a t u r a l  f requency  and damping r a t i o  of t h e  wing v e r t i c a l  and chord-
w i s e  bending modes o b t a i n e d  from t h e  t r a n s f e r  f u n c t i o n  measurements. 
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“The aeronautical and space activities of the United States shall be 
conducted so as to  contribute . . . t o  the expansion of human knowl­
edge of phenomena in the atmosphere and space. T h e  Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof.” 

-NATIONAL AERONAUTICSAND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 
TECHNICAL REPORTS: Scientific and , 

technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS : 
Information receiving limited distribution 
because of preliminary data, security classifica­
tion, or other reasons. Also includes conference 
proceedings with either limited or unlimited 
distribution. 

CONTRACTOR REPORTS : Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL. PUBLICATIONS : Information 
derived from or of value to NASA activities. 
Publications include final reports of major 
projects, monographs, data compilations, 
handbooks, sourcebooks, and special 
bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other-non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 

Defails on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

N A T I O N A L  A E R O N A U T I C S  A N D  SPACE A D M I N I S T R A T I O N  
Washington, D.C. 20546 


